Diseases of the central nervous system (CNS) in patients infected with the human immunodeficiency virus (HIV) result directly from HIV itself or from a variety of opportunistic agents. These infections include progressive multifocal leukoencephalopathy, toxoplasmosis, and cryptococcosis. A resurgence of tuberculosis and neurosyphilis has also been documented. Mass lesions, meningoencephalitis, demyelination, atrophy, and vascular lesions are the commonly encountered imaging findings. The introduction of highly active antiretroviral therapy (HAART) has improved both the clinical and radiologic findings in HIV-infected patients and reduced the number of opportunistic infections. In countries that use HAART, AIDS (acquired immunodeficiency syndrome) dementia complex is becoming the most common neurologic complication of HIV infection, whereas opportunistic infections are still the major cause of neurologic complications in patients from countries that do not commonly use HAART. Immune reconstitution inflammatory syndrome, which occurs in some patients in the weeks to months after the institution of HAART, may alter the typical imaging appearance of infectious diseases involving the CNS. Knowledge of the spectrum of imaging findings of these infectious diseases, as well as the effect that treatment has on imaging appearances, is important in the evaluation of HIV-infected patients.
Introduction

The human immunodeficiency virus (HIV) is a retrovirus that infects cells of the immune system and destroys or disrupts their function. In the more advanced stages of HIV infection, acquired immunodeficiency syndrome (AIDS) develops. According to the Joint United Nations Programme on HIV/AIDS, an estimated 39.5 million people were living with HIV infection at the end of 2006 (1). HIV is a neurotropic virus that enters the central nervous system (CNS) early in the course of infection (2,3). Up to 60% of AIDS patients will have neurologic manifestations, and, in the era before use of highly active antiretroviral therapy (HAART), neurologic disease was the first manifestation of symptomatic HIV infection in 10%–20% of patients (4,5). HIV crosses the intact blood-brain barrier, and the virus has been cultured from the brain, nerve, and cerebrospinal fluid of patients at all stages of disease (6,7). This virus infects the cells of the monocyte-macrophage lineage, and the indirect effects on macrophage activation are implicated as a cause of nervous system injury in HIV infection. Although HIV has previously been described as not directly infecting the astrocytes or oligodendrocytes, evidence is building that HIV may infect these cells as well (3,8,9).

Neurologic complications arise from the HIV infection itself, from secondary opportunistic infections and neoplasms, and from drug-related complications of therapy. The opportunistic infections are varied and include progressive multifocal leukoencephalopathy (PML), cytomegalovirus (CMV) infection, and fungal infections. A resurgence of CNS tuberculosis and neurosyphilis has also occurred with the advent of HIV infection. Development of neurologic manifestations depends on a variety of factors, including therapy with antiretroviral drugs and the patient’s overall degree of immunosuppression. A decrease in the CD4 receptor–positive T lymphocytes is the best predictor of the potential development of opportunistic infections. The patient is most vulnerable when the CD4 count falls below 200 cells/µL (10). Neuroradiologic findings in HIV infection vary, depending on the underlying etiology. In addition, multiple conditions may involve the nervous system simultaneously.

The advent of HAART, which has been used in Western countries to treat HIV-infected patients since 1996, has resulted in a decline in the incidence of neurologic complications, especially those caused by opportunistic infections (11,12). In countries where HAART is available, cognitive dysfunction and peripheral neuropathies caused directly by HIV represent the majority of cases of HIV-related neurologic disorders; in other countries, opportunistic infections of the CNS are more common. Immune reconstitution inflammatory syndrome (IRIS) is a complication of HAART that causes transient worsening or appearance of new signs, symptoms, or radiologic manifestations of opportunistic infection after initiation of therapy. Occasionally, IRIS may be associated with a fatal outcome. IRIS is thought to arise from restoration of immune response, and it impacts the imaging findings.

Knowledge of the imaging findings associated with the various infectious agents that involve the CNS in HIV-infected patients, as well as the impact of treatment on them, is important in guiding therapy. In this article, we summarize the current literature as well as our own experience with HIV cases from the Radiologic Pathology Archives at the Armed Forces Institute of Pathology (AFIP). The clinical, pathologic, and imaging features of AIDS dementia complex, PML, toxoplasmosis, CMV infection, fungal infections, tuberculosis, and neurosyphilis are emphasized, followed by a brief discussion of IRIS.

AIDS Dementia Complex

AIDS dementia complex is an HIV-associated, chronic, neurodegenerative syndrome characterized by progressive cognitive and motor impairment and atrophic changes involving the brain. Although AIDS patients have improved survival rates because of antiretroviral therapy, approximately 15%–20% of these patients develop AIDS dementia complex, and it is one of the most common causes of morbidity in this group in the United States (12,13).

Epidemiology and Clinical Features

AIDS dementia complex occurs during the later stages of AIDS and predominantly affects the white matter by producing demyelination and gliosis (13,14). The diagnosis is based on the clinical findings of CNS neurologic dysfunction, which include inattention, indifference, and psychomotor slowing, and on objective measures of dysfunction that are based on standardized neuropsychologic tests. The neurologic dysfunction can further progress to frank dementia, and the viral load in the cerebrospinal fluid helps predict the increased risk...
for dementia (15). Patients with CD4 counts less than 200 cells/µL, longer duration of HIV infection, and older age at seroconversion are at most risk for developing AIDS dementia complex (16).

Pathologic Features
The underlying pathogenesis for AIDS dementia complex is still not fully understood. Studies of animal models suggest that meningeal inflammation occurs initially, along with an associated perivascular HIV-infected monocyte proliferation that disrupts the blood-brain barrier. HIV then gains direct access to the brain and infects the microglial cells (which are macrophages), thus resulting in their activation and proliferation. This process creates multinucleated giant cells and microglial nodules. The microglial cell activation also causes an inflammatory response that leads to injury of neural tissue (17–20). The severity of symptoms corresponds to the overall viral load within the CNS (15).

At gross inspection, the brain volume appears markedly reduced (ie, atrophic) compared with norms for the patient’s age (Fig 1a). According to histopathologic analysis, patients either have HIV encephalitis, HIV leukoencephalopathy, or both; some authors consider these conditions to be the extremes of a spectrum of HIV-induced disease (21). In HIV encephalitis, pericapillary multinucleated giant cells are seen, along with myelin loss, reactive astrocytosis, and microglial activation with microglial nodules (Fig 1b). Diffuse myelin loss, astroglial proliferation, and infiltration by mono- and multinucleated macrophages characterize HIV leukoencephalopathy (21,22). Cortical and deep central gray matter is also involved with a diffuse reactive astrocytosis and microglial activation; neuronal loss may also be seen (23).

Imaging Features
The imaging findings of AIDS dementia complex are frequently referred to as HIV encephalitis. In patients with AIDS dementia complex, computed tomography (CT) shows diffuse, symmetric cerebral atrophy that is out of proportion for the patient’s age. In addition, symmetric abnormal low attenuation in the periventricular and deep white matter is noted (Fig 2a). HIV encephalopathy does not result in mass effect or enhancement. If either of these findings is present, another diagnosis must be considered.

On magnetic resonance (MR) images, a diffuse cerebral atrophy with symmetric, patchy or confluent areas of T1 and T2 prolongation are seen within the periventricular and deep white matter of patients with AIDS dementia complex. Often, there is a frontal predominance that may include involvement of the genu of the corpus callosum. Neither enhancement nor mass effect is observed (Fig 2b, 2c). Proton (1H) MR spectroscopy reveals decreased N-acetylaspartate (NAA) and elevated peaks of in choline and myoinositol (24,25).
Figure 2. AIDS dementia complex in a 36-year-old man with progressive dementia.
(a) Unenhanced axial CT image demonstrates prominence of the sulci and ventricles, findings consistent with global volume loss. Symmetric, low attenuation is present in the periventricular white matter.
(b) Axial T2-weighted image demonstrates prominence of the sulci and ventricles, findings consistent with diffuse atrophy. Symmetric, periventricular hyperintensity corresponds to the regions of low attenuation seen on the CT image. There is no associated mass effect.
(c) Postcontrast (ie, contrast material–enhanced) T1-weighted image shows that no enhancement is associated with the regions of T2 hyperintensity.
PML typically results in a progressive neurologic decline, and patients develop cognitive impairment, altered mental status, and personality changes. Motor and sensory changes also occur, and the patients may develop seizures. Without treatment, patients have a progressive downhill course, with death occurring within 1 year of diagnosis of PML in 90% of cases (32). Polymerase chain reaction testing of the cerebrospinal fluid for the John Cunningham virus assists in making the diagnosis, with a specificity approaching 96% (33,34). However, Marzocchetti et al (35) found that the sensitivity of polymerase chain reaction testing has decreased from 90% to 58% since the institution of HAART. The cause of this finding is not understood.

Pathologic Features
The John Cunningham virus directly infects the oligodendrocytes, which are then unable to maintain myelin, and denuded axons and focal areas of demyelination result (Fig 3a). Inflammatory reaction is usually blunted, a feature that accounts for the typical absence of mass effect and vasogenic edema. At gross inspection, the degree of brain atrophy is milder than that seen with AIDS dementia complex, and areas of demyelination and, occasionally, necrosis are seen. Frequently, these findings are found in the subcortical white matter (Fig 3b, 3c). Multiple lesions are common, but solitary lesions may be seen as well. Histopathologic analysis reveals astrocytes with bizarre, pleomorphic nuclei and enlarged oligodendrocyte nuclei with a ground-glass appearance and scanty perivascular inflammation (Fig 3d). At electron microscopy, virions are seen within the nuclei of oligodendrocytes, and viral particles may appear as filamentous or spherical forms, referred to as the “spaghetti and meatball” appearance (Fig 3e).
Figure 3. PML in a 30-year-old man with AIDS. (a) Photograph of a specimen stained with myelin stain (blue) shows areas without stain, a finding consistent with demyelination. (b) Photograph of a gross specimen demonstrates areas of subcortical demyelination that appear to be grossly necrotic in some regions (arrow). (c) Coronal postcontrast T1-weighted image, corresponding to the gross specimen in b, shows low signal intensity (arrows) involving the white matter of the left hemisphere, including the subcortical U fibers. No enhancement is seen. (d) Photomicrograph (original magnification, ×200; H-E stain) demonstrates enlarged oligodendroglial nuclei with a ground-glass appearance (arrows) that are characteristic for PML. (e) Electron micrograph reveals viral particles within an oligodendrocyte nucleus that are both spherical and filamentous (arrows): the “spaghetti and meatball” appearance.
mass effect and hemorrhage are unusual, but, if present, they are typically mild (36–38). Typically, PML lesions do not enhance, but faint peripheral enhancement has been described (Fig 5). Results reported in a few studies suggest that enhancement is associated with an improved survival rate (32,39). In one study, 50% of the long-term survivors had enhancement of PML lesions at MR imaging, compared with only 8.9% of the short-term survivors (32). In these cases, the enhancement was described as faint and peripheral (32). Enhancement has been proposed to be related

Imaging Features

In patients with PML, CT reveals asymmetric focal zones of low attenuation that involve the periventricular and subcortical white matter (Fig 4a). This appearance is a differential diagnostic feature compared with the typically more symmetric areas of low attention seen in patients with HIV encephalopathy. On MR images, there are typically multifocal, asymmetric areas of T1 and T2 prolongation in the periventricular and subcortical white matter (Fig 4b, 4c). These lesions are frequently bilateral and multiple, although they may occasionally be solitary. Subcortical U fiber involvement is frequently seen, a finding that provides a sharp contrast with the overlying gray matter. Mass effect and hemorrhage are unusual, but, if present, they are typically mild (36–38). Typically, PML lesions do not enhance, but faint peripheral enhancement has been described (Fig 5). Results reported in a few studies suggest that enhancement is associated with an improved survival rate (32,39). In one study, 50% of the long-term survivors had enhancement of PML lesions at MR imaging, compared with only 8.9% of the short-term survivors (32). In these cases, the enhancement was described as faint and peripheral (32). Enhancement has been proposed to be related

Figure 4. PML in a 30-year-old woman with HIV infection. (a) Axial unenhanced CT image reveals a focal area of low attenuation within the white matter of the right hemisphere. The subcortical U fibers are involved, and no mass effect is present. (b) Axial T2-weighted image depicts hyperintensity involving the white matter of the right hemisphere, including the subcortical U fibers. No mass effect is seen. (c) Axial postcontrast T1-weighted image demonstrates hypointensity and no evidence of associated enhancement.
Figure 5. (a) PML in a 30-year-old woman with HIV infection. Coronal postcontrast T1-weighted image shows patchy enhancement (arrow) in the left temporal lobe. (b, c) PML in a 25-year-old man with AIDS. (b) Axial T1-weighted image demonstrates an area of low signal intensity involving the white matter of the right frontal lobe that crosses the corpus callosum to the white matter of the left frontal lobe. Mild mass effect is present. (c) Axial postcontrast T1-weighted image demonstrates peripheral enhancement, which is more confluent than typically seen in patients with PML. A neoplastic process, such as lymphoma or glioma, would be in the differential diagnosis. At autopsy, the lesion proved to be PML.

To the patient’s ability to mount an inflammatory response; however, in a study of radiologic-pathologic correlation, Whiteman et al (36) found no correlation between enhancement at MR imaging and inflammation seen in pathologic specimens (36). Others suggest that the enhancement results from immune response to viral antigen (40). When patients receive HAART, increased enhancement and mass effect have been reported, and these findings may be a result of IRIS if they are observed in the weeks following the initiation of therapy (26,41).

Evaluation of diffusion-weighted imaging in patients with PML has been limited. Apparent diffusion coefficient (ADC) values have been reported to be much higher in the center of a lesion than at its periphery, and some authors have described observation of a leading edge of high signal intensity on diffusion-weighted images (Fig 6) (41,42). Recent studies suggest that diffusion-weighted imaging may be useful for documenting response of PML to HAART. Usiskin et al (43) obtained serial ADC measurements by using a b value of 3000 sec/mm2, and they found a marked reduction of lesional ADC and a reconstitution of anisotropy in the affected areas that correlated with treatment response.

MR spectroscopy demonstrates a reduction in NAA, presence of lactate, and increased amounts of choline and lipids.

Toxoplasmosis
Toxoplasmosis, the most common mass lesion in patients with AIDS, is caused by the ubiquitous parasite, *Toxoplasma gondii* (44,45). It is an obligate intracellular protozoan that exists in three forms: oocysts, tachyzoites, and bradyzoites.
Oocytes occur in the definitive hosts (members of the family Felidae) and infect humans when the organisms are inadvertently ingested. Tachyzoites are the rapidly multiplying form, and, when they localize to the CNS (or muscle), they convert to tissue cysts, known as bradyzoites.

Epidemiology and Clinical Features

Cerebral toxoplasmosis, the most common opportunistic CNS infection in AIDS patients, occurs in 15%–50% of cases (46). With the introduction of HAART, the number of cases has declined (47). A total of 20%–70% of the entire population of the United States demonstrates seropositivity for *T gondii*, and, in most cases, cerebral toxoplasmosis results from a reactivation of a latent infection (48). Therefore, a positive antibody titer is not diagnostic of active toxoplasmosis. However, a negative titer is not helpful because up to 20% of patients with AIDS may not have detectable antitoxoplasma antibodies (49).

Polymerase chain reaction testing of peripheral blood samples has sensitivity and specificity for the diagnosis of cerebral toxoplasmosis as high as 80% and 90%, respectively (50). Polymerase chain reaction testing of cerebral spinal fluid has a variable sensitivity, with results ranging from 11.5% to 100%, but its specificity is high (96%–100%) (50). HIV-infected patients become most susceptible to developing active toxoplasmosis when their CD4 counts reach less than 100 cells/µL. Patients may present with symptoms from mass effect, focal neurologic deficits, seizures, or cranial nerve palsies.

Pathologic Features

Toxoplasmosis typically results in necrotizing encephalitis, although rare nonnecrotizing examples are associated with microglial nodules and astrogliosis (Fig 7a). Intra- and extracellular *Toxoplasma* tachyzoites are numerous. Cysts containing bradyzoites are usually found at the periphery of necrotic areas (Fig 7b). The regions of the corticomedullary junction, basal ganglia, and thalamus are affected most often; however, the brainstem may also be involved.

Imaging Features

Unenhanced CT reveals multiple areas of abnormal low attenuation that appear most frequently in the basal ganglia, thalamus, and corticomedullary junction (51). These areas demonstrate ring or nodular enhancement on postcontrast CT images.

At MR imaging with T2-weighted sequences, toxoplasmosis lesions are typically hypo- to isointense and are surrounded by high-signal-intensity vasogenic edema (Fig 7b). Hemorrhage may be seen occasionally, a finding that can help differentiate toxoplasmosis from lymphoma, which typically does not hemorrhage before treatment (52). Postcontrast MR imaging reveals multiple nodular lesions or ring-enhancing lesions (Fig 7c). Occasionally, a small eccentric nodule...
Figure 7. Toxoplasmosis in a 28-year-old man with HIV infection. (a) Photograph of a gross specimen shows necrotic-appearing mass lesions in the bilateral basal ganglia. (b) Photomicrograph (original magnification, ×200; H-E stain) demonstrates cysts that contain bradyzoites. (c) Axial T2-weighted image demonstrates a region involving the right basal ganglia that is isointense to hypointense relative to gray matter (arrow). The lesion is surrounded by high-signal-intensity vasogenic edema. Smaller lesions are present in the left basal ganglia. (d) Axial postcontrast T1-weighted image demonstrates multiple enhancing lesions.

Figure 8. Toxoplasmosis in a 31-year-old patient with AIDS who presented with headaches and altered mental status. Coronal postcontrast T1-weighted image demonstrates ring-enhancing lesions with eccentric nodules: the “target sign” (arrows). Mild, linear dural enhancement was presumed to be from a recent lumbar puncture.
rests alongside an enhancing ring: the “target sign” (Fig 8). This finding is highly suggestive of toxoplasmosis; however, it is relatively insensitive and is seen in less than 30% of cases (53). Toxoplasmosis occasionally involves the corpus callosum and may mimic a glioblastoma multiforme (54). Lesions from toxoplasmosis are usually multiple, and only in approximately 14% of cases are they solitary (55).

Figure 9. Acute toxoplasmosis in a 37-year-old man with a previous history of toxoplasmosis who had discontinued his prophylactic therapy. (a) Axial unenhanced CT image reveals a peripherally calcified lesion (arrow) in the right caudate head that is a sequela of previous toxoplasmosis infection. The low-attenuation mass lesion with surrounding vasogenic edema in the region of the left basal ganglia is from a new focus of toxoplasmosis. (b) Axial FLAIR (fluid-attenuated inversion recovery) image demonstrates marked vasogenic edema that involves the region of the left basal ganglia and thalamus and that surrounds a region of low signal intensity. Low signal intensity secondary to calcification is seen around the lesion in the region of the right caudate head. (c) Spectrum from 1H MR spectroscopy from the region of the low-signal-intensity lesion seen in b demonstrates a markedly elevated lipid-lactate peak (bracket). Small amounts of choline and NAA are also seen because of volume averaging with the surrounding brain tissue. (Case courtesy of Max Wintermark, MD, University of California, San Francisco.)

Differential Diagnosis

Patients with the “typical” imaging findings of toxoplasmosis are usually treated empirically for the disease. However, because lymphoma and toxoplasmosis can have very similar imaging appearances, follow-up evaluation is mandatory. After adequate treatment—a multidrug regimen of pyrimethamine sulfadiazine, and folic acid—the number and size of the lesions as well as their associated mass effect should decrease. This reduction may take anywhere from 2 to 4 weeks and up to 6 months. At sites of previous disease, the brain may appear normal or there may be encephalomalacia or calcification (Fig 9a, 9b). All lesions need to be followed to resolution, since multiple pathologic conditions may coexist in immunocompromised patients.

When considerable improvement after treatment does not appear, performance of thallium-201 brain single photon emission computed tomography (SPECT), fluorodeoxyglucose
positron emission tomography (FDG PET), or MR spectroscopy may be useful for reevaluation of the patient. Lymphoma lesions will result in positive findings at SPECT and FDG PET, and toxoplasmosis will not; however, lymphoma lesions smaller than 2 cm may result in negative findings. In addition, the reported sensitivities of these two imaging modalities have been variable (56–58). At 1H MR spectroscopy, lymphoma demonstrates elevated peaks of choline, and MR perfusion typically shows an elevated relative cerebral blood volume in lymphoma but not in toxoplasmosis. Toxoplasmosis demonstrates elevated peaks of lipid and lactate, findings that, unfortunately, can also be seen in lymphoma if the voxel is placed over the necrotic, rather than cellular portion, of the lesion (59,60). Decreased peaks of NAA and moderately decreased peaks of choline have also been reported (61) (Fig 9c). If a patient is receiving steroids, it will be impossible to assess lesion activity accurately because steroids reduce the degree of enhancement and diminish associated edema and mass effect. Diffusion-weighted imaging has been suggested to help differentiate between the two diseases, as lymphoma typically has reduced diffusion. Unfortunately, toxoplasmosis demonstrates a wide range of diffusion characteristics, which can overlap with those of lymphoma (62).

Differentiating lymphoma from toxoplasmosis may be difficult with imaging findings alone, because both entities may produce focal, enhancing mass lesions and both are common in AIDS patients. Toxoplasmosis abscesses have been described as being smaller and more numerous. In addition, if a periventricular pattern is present, this finding suggests lymphoma, since toxoplasmosis uncommonly involves the ependyma.

Treatment and Prognosis

Toxoplasmosis will recur if therapy is discontinued. Treatment is effective against the free tachyzoites but not the encysted forms; thus, patients require lifelong maintenance therapy.

CMV Infection

CMV is a very common herpes virus that does not produce clinical disease in most people with an intact immune system.

Epidemiology and Clinical Features

CMV remains in latent form in the general population and reactivates in the setting of immune suppression. CNS involvement typically assumes the form of meningoencephalitis or ventriculitis, but it can also take the form of myelitis, polyradiculitis, and retinitis. Patients who develop CMV retinitis have a tenfold increased risk of developing CMV encephalitis. CMV may also cause a rapidly ascending polyneuropathy. A clinical diagnosis of CMV infection occurs in less than 2% of AIDS patients with neurologic disorders; however, at autopsy, evidence of CMV is found in 10%–40% of patients (63). CMV infection usually occurs when the CD4+ count falls below 50 cells/µL. The introduction of HAART resulted in a decreased prevalence of CMV infection and increased survival in AIDS patients.

Pathologic Features

Histologic identification of characteristic eosinophilic intranuclear inclusions surrounded by halos confirms the diagnosis of CMV infection. Microglial nodular encephalitis and ventriculoencephalitis are the most common histopathologic patterns (63).

Imaging Features

Imaging findings of CNS involvement in patients with CMV infection are frequently nonspecific, and, in most cases, findings from CT and MR imaging are normal. Demyelination can result in diffuse white matter abnormalities that appear as areas of low attenuation on CT images and of hyperintensity on T2-weighted MR images. CMV infection may also produce a suggestive, if not characteristic, pattern of ependymitis. In CMV meningoencephalitis or ventriculitis, low attenuation may be seen in the white matter, and ependymal enhancement may be seen on contrast-enhanced CT images. T2-weighted MR images demonstrate focal or diffuse increased signal intensity in white matter, as well as ependymal, subependymal, and periventricular T2 hyperintensity (Fig 10). In rare cases, CNS involvement with CMV may manifest as a ring-enhancing or space-occupying lesion.

Differential Diagnosis

The differential diagnosis of CMV ventriculitis includes bacterial ventriculitis; however, patients with the latter infection are typically acutely ill, a clinical finding that aids diagnosis. Lymphoma can also result in ependymal enhancement; however, it is more often nodular and irregular.

Treatment and Prognosis

CMV ventriculitis may result in death days to weeks after the onset of clinical symptoms. In cases of CMV encephalopathy, treatment with gancyclovir and foscarnet may improve the patient’s neurologic status, although the improvement may be short-lived.
Fungal Infection

Fungal infections are life threatening when they occur in the immunocompromised patient. The numbers of deaths from fungi in the immunocompromised population increased by fourfold in the past 20 years (64). The most commonly encountered fungi within this population are Candida, Cryptococcus, and Aspergillus species (65,66).

Cryptococcal Infection

Cryptococcus neoformans is an encapsulated, ubiquitous yeastlike fungus found in soil contaminated by bird excreta. Infection with C. neoformans is the most common fungal infection of the CNS (4,67).

Epidemiology and Clinical Features.—Cryptococcus is the third most common cause of CNS infection in AIDS patients, ranking behind HIV and Toxoplasma. Before HAART, cryptococcal infection of the CNS occurred in up to 10% of patients, usually when the CD4 count dropped below 100 cells/µL (68–70). Cryptococcosis most likely spreads to the CNS by means of hematogenous dissemination from a pulmonary focus; however, reactivation of a latent cryptococcal infection is also possible (70,71). Symptoms are often nonspecific. Patients may present with signs of meningitis or, less frequently, meningoencephalitis. The detection of cryptococcal capsular polysaccharide antigen in the serum and cerebrospinal fluid aids in making the diagnosis.

Pathologic Features.—The main forms of cryptococcal infection are meningitis, pseudocysts, and cryptococcomas. At gross inspection, meningitis is seen as thickening and opacification of the leptomeninges. The pseudocysts are most frequent in the basal ganglia, and they have a “soap bubble” appearance, which is caused by the capsular material produced by the yeast (Fig 11a). Cryptococcomas are histologically characterized either as a chronic granulomatous reaction with fewer organisms or as lesions that contain numerous organisms and that are associated with mild inflammation. Lymphocytes, macrophages, and foreign body–type giant cells are typically seen. A collection of budding yeastlike cells within a gelatinous mass characterize the pseudocyst (Fig 11b). India ink and mucicarmine are stains used to detect the organisms.

Imaging Features.—The radiologic manifestations of cryptococcosis are varied and frequently minimal. The imaging findings may consist of meningoencephalitis, intraventricular or intraparenchymal cryptococcomas, gelatinous pseudocysts, or hydrocephalus. Hydrocephalus, communicating or noncommunicating, is the most frequent, although nonspecific, finding of cryptococcal infection (72). Cryptococcus may spread along the perivascular spaces from the basilar cisterns, and cryptococcal infection may appear on images as rapidly growing, nonenhancing “cysts.” Dilated perivascular spaces resulting from the presence of gelatinous pseudocysts are a frequent finding, and their presence in an immunocompromised patient should raise a red flag (Fig 11c).

Figure 10. CMV ependymitis in a 30-year-old man with AIDS. (a) Coronal T2-weighted FLAIR image demonstrates circumferential hyperintensity surrounding the lateral and fourth ventricles. Nonspecific T2 signal is present in the white matter. (b) Coronal postcontrast T1-weighted image reveals thin, linear periventricular enhancement. The nonspecific T2 hyperintensity in the white matter did not enhance. (Case courtesy of Max Wintermark, MD, University of California, San Francisco.)
varies, but they may demonstrate surrounding vasogenic edema as well as nodular enhancement that results from compromise of the blood-brain barrier. The most common sites for cryptococcomas are the basal ganglia, thalamus, and cerebellum (75).

Differential Diagnosis.—The main differential diagnoses for an enhancing lesion in the basal ganglia are cryptococcoma, lymphoma, toxoplasmosis, and, to a lesser extent, pyogenic abscess. It is not possible to differentiate a cryptococcoma from a pyogenic abscess on conventional MR images. Subependymal lesions may appear similar

Figure 11. Cryptococcal meningoencephalitis in a 42-year-old man with AIDS who became progressively obtunded. (a) Photograph of a gross specimen of the basal ganglia demonstrates lesions that have a soap bubble appearance (arrows). (b) Photomicrograph (original magnification, ×200; H-E stain) depicts faintly staining yeast (arrow). (c) Axial T2-weighted image shows multiple foci of high signal intensity within the bilateral basal ganglia, findings consistent with gelatinous pseudocysts in dilated perivascular spaces (arrows). Enlargement of the ventricles, consistent with hydrocephalus, is also present.

On CT images, cryptococcal lesions may have high or low attenuation; on MR images, they demonstrate T1 and T2 prolongation. Enhancement varies, but it is more likely to occur in immunocompetent hosts, since they can mount an effective inflammatory response. Cryptococcal lesions do not have reduced diffusion at diffusion-weighted imaging, a finding that may help distinguish them from pyogenic abscesses (73). Meningoencephalitis results in T2 hyperintensity within the region of involvement, and meningeal enhancement may be seen (Fig 12). Cryptococcomas within the brain parenchyma are rare (Fig 13) (73,74). Their appearance

Figures 12, 13. (12) Cryptococcal meningoencephalitis in a 42-year-old woman. (a) Axial T2-weighted image demonstrates high signal intensity in the right occipital lobe. In addition, foci of hyperintensity are present in the bilateral basal ganglia (arrows), findings consistent with gelatinous pseudocysts. (b) Axial T1-weighted image demonstrates low signal intensity in the right occipital lobe that corresponds to the area of hyperintensity seen in a. (c) Axial postcontrast T1-weighted image demonstrates leptomeningeal enhancement in the region of the T2 hyperintensity. (13) Cryptococcoma in a 25-year-old HIV-infected patient who presented with increasing headache, nausea, and vomiting. (a) Axial T1-weighted image demonstrates a low-signal-intensity mass lesion in the right cerebellum. (b) On an axial T2-weighted image, the mass is heterogeneous in signal intensity but predominantly hyperintense, with a surrounding rim of T2 hyperintensity, a finding consistent with edema. (c) Axial postcontrast T1-weighted image reveals peripheral nodular enhancement of the lesion.
Aspergillosis

Aspergillus species are septate hyaline molds that are ubiquitous throughout the world. They are found in soil, plants, and decaying matter. They are angioinvasive, and A. fumigatus is the most common causative agent of aspergillosis.

Epidemiology and Clinical Features.—As with most fungal infections of the CNS in immunocompromised patients, cerebral involvement by Aspergillus results from hematogenous spread from a pulmonary focus, or the fungus may also directly invade the brain via the sinus. A resultant infectious vasculopathy may cause acute infarction or hemorrhage, or the fungus can extend into the surrounding tissue, resulting in infectious cerebritis or abscess. Aspergillus has a predisposition to infect the perforating arteries. Involvement of the skull base and orbit leads to visual disturbance and cranial nerve palsies, and invasive sinonasal infections are lethal in greater than 50% of cases.

Pathologic Features.—Aspergillus species have septate hyphae that branch at acute angles (Fig 14a). They tend to invade blood vessels and
spread along the internal elastica and lamina, resulting in vascular thrombosis and hemorrhagic infarcts with variable inflammation (Fig 14b). Typically, dissemination leads to multiple intraparenchymal lesions, often in the distribution of the middle cerebral artery.

Imaging Features.—Ashdown et al (78) described three imaging patterns for cerebral aspergillosis: (a) multiple cortical and subcortical regions of low attenuation on CT images, with T2 hyperintensity seen in corresponding areas on MR images (Fig 15); (b) multiple ring-enhancing lesions (Fig 14c); and (c) dural enhancement adjacent to enhancing lesions of the paranasal sinuses or calvaria (Fig 16). The presence of hemorrhage associated with the lesions and intraparenchymal hemorrhage in an immunocompromised patient should cause one to consider the possibility of aspergillosis (Fig 17). The ring enhancement may be subtle or well defined, which may be related to the patient’s immune status (78,79). Lesions of the corpus callosum, basal ganglia, and thalami may be seen, because of involvement of the perforating arteries. On diffusion-weighted images, low ADC values are observed within the fungal abscesses. Luthra et al (80) found that diffusion-weighted images and

Figure 15. Disseminated aspergillosis in a 39-year-old AIDS patient. (a) Axial T2-weighted FLAIR image shows two well-circumscribed foci of hyperintensity within the centrum semiovale. There is no significant surrounding edema. (b) Axial postcontrast T1-weighted image demonstrates low-signal-intensity lesions that do not demonstrate enhancement.

Figure 16. Aspergillosis in an HIV-infected patient who presented with rapidly progressive proptosis. Axial postcontrast T1-weighted image shows a peripherally enhancing low-signal-intensity mass within the left orbit that is causing proptosis. Intracranial extension is present, as evidenced by dural enhancement in the middle cranial fossa (arrow). Opacification and enhancement of the left ethmoid air cells is seen. In addition, enhancement is seen within the periorbital soft tissue and in the left temporalis muscle. (Courtesy of Max Wintermark, MD, University of California, San Francisco.)
defining illness, and it may be the initial clinical manifestation of AIDS. CNS tuberculosis can result from reactivation of a previous infection or from a primary, newly acquired infection.

Epidemiology and Clinical Features
In 2004, 250,000 of the 1.7 million patients worldwide who died of tuberculosis were infected with HIV (83). CNS tuberculosis has a high mortality rate of at least 70%. A total of 5%–9% of AIDS patients develop tuberculosis, and of these, 2%–18% will have CNS infection (84–86). Results from chest radiography will be positive in 65% of these patients. The predominant mechanism of disease spread is hematogenous.

Pathologic Features
The most common intracranial manifestation of tuberculosis is meningitis, which is usually more prominent in the basilar cisterns, especially around the circle of Willis. However, tuberculosis meningitis and infarction are not uncommon findings. HIV infection may alter the pathologic features of tuberculous meningitis. Fewer basal exudates and greater numbers of acid-fast bacilli occur in the brain parenchyma and meninges in patients with HIV infection (Fig 18a) (87).
Tuberculomas are composed of a central zone of solid caseation necrosis that is surrounded by collagenous tissue, epitheloid histiocytes, Langhans-type multinucleated giant cells, and mononuclear inflammatory cells. Smears demonstrate few bacilli.

Imaging Features

In one study, hydrocephalus was seen in 51% and meningeal enhancement in 45% of patients with CNS tuberculosis (Fig 18b, 18c) (85). The hydrocephalus results primarily from obstruction of the basal cistern by inflammatory exudate. In addition, cerebral abscesses and tuberculomas may be seen (85). Tuberculomas occurred in 24% of patients in a study by Whiteman et al (84). Tuberculomas are granulomas that result either from hematogenous spread or extension from cerebrospinal fluid infection via cortical veins or small penetrating arteries (84). The majority of tuberculomas are supratentorial and may be solitary or multiple; however, they can also be found in subdural, epidural, and subarachnoid spaces (Fig 19) (84). Tuberculomas are hypointense on T2-weighted MR images in the early stages; as they mature, they develop a hypointense center surrounded by an isointense capsule, which corresponds to solid caseation necrosis. They may further progress to abscess formation with a hyperintense center. However, some tuberculomas have a hyperintense center without abscess formation, an appearance that makes them difficult to distinguish from lesions of toxoplasmosis or...
thrombosis of arteries as they course through the thick basilar exudate result in infarctions of the small perforating arteries that supply the basal ganglia (89). Diffusion-weighted imaging may be helpful in detecting complications from tuberculosis, such as infarction or cerebritis.

Treatment and Prognosis
Tuberculous meningitis is the most lethal infection associated with CNS tuberculosis, with a mortality rate of approximately 30% (90,91). Infected patients are typically treated with steroids in addition to antituberculin drugs.

Neurosyphilis
Neurosyphilis is a sexually transmitted disease that results from infection with the spirochete Treponema pallidum. A resurgence of this entity has been seen among the HIV-infected population.
Neurosyphilis affects approximately 1.5% of the AIDS population. In this population, it has a shorter latent period for progression to clinically evident neurologic disease (92). CNS involvement occurs in 5%–10% of untreated patients and may occur at any stage of the syphilitic infection (93,94). Because many patients with neurosyphilis are asymptomatic or have nonspecific symptoms, such as headaches, seizures, personality change, and confusion, diagnosis can be difficult (95,96). Symptomatic cases can be divided into four types based on the predominant clinical features: meningeal, vascular, general paresis, and tabes dorsalis. The most common forms of neurosyphilis are the meningeal and vascular, whereas general paresis and tabes dorsalis are rare in the era of antibiotics. Symptoms occurring with the meningeal form resemble those of any acute meningitis: headache, cranial neuritis, and hydrocephalus. This form usually occurs in the first 2 years of infection (97). Vascular syphilis typically occurs 5–7 years after the primary infection and is characterized by headache, transient hemiparesis, and abnormal cerebrospinal fluid findings (93). Laboratory findings in neurosyphilis include positive results from a serum fluorescent antibody test, pleocytosis, elevated protein levels, or a positive VDRL test. If the cerebrospinal fluid VDRL is positive, it is highly specific for neurosyphilis, but this test is negative in approximately one-half of neurosyphilis patients.

Figure 20. Syphilitic gumma in a 32-year-old man with HIV infection and a positive VDRL test. (a) Axial T2-weighted image shows an extraaxial, predominantly hyperintense lesion with a central focus of low signal intensity (arrow). (b) On a coronal postcontrast T1-weighted image, the lesion heterogeneously enhances and demonstrates a mild degree of dural enhancement. (Case courtesy of Max Wintermark, MD, University of California, San Francisco.)

Pathologic Features
Patients may develop leptomeningitis and multifocal arteritis, conditions that potentially lead to cerebral infarction. Both small vessel endarteritis and large and medium-sized vessel arteritis occur. Other findings include nonspecific white matter lesions and cerebral gummas. Gummas represent well-circumscribed masses of necrosis in which reticulin is preserved. Cerebral gummas are characterized by infiltration of the meninges and brain by lymphocytes and abundant plasma cells. Eventually, these cells are replaced by fibrosis and necrosis. Spirochetes are not typically found in these lesions (98).

Imaging Features
Neurosyphilis has a wide variety of imaging findings. Mild to moderate atrophy, white matter lesions, cortical and subcortical infarctions, gummas, leptomeningeal enhancement, and arteritis have all been reported (94,95). Gummas are uncommon. They are usually located peripherally in the cerebral hemisphere cortex. On CT images, they appear as peripherally located lesions that are isodensitizing relative to the cortex. On MR images, they are isointense to gray matter with T1-weighted sequences and hyperintense with T2-weighted sequences. These lesions will enhance with contrast material (Fig 20). Overlying leptomeningeal enhancement may also be seen.
On MR images, regions of nonspecific T2 hyperintensity may be seen in the white matter. There have been reports of neurosyphilis that demonstrates mesiotemporal T2-weighted hyperintensity, a finding that mimics herpes encephalitis (96,99,100). Evidence of infarctions of various ages may be seen, and meningovascular syphilis should always be in the differential diagnosis for an HIV-infected patient who presents with cerebral infarction. The infarcts are typically located in the perforating artery territory of the basal ganglia.
and brainstem. The middle cerebral artery territory is another common location. The cranial nerves, especially the optic and vestibulocochlear nerves, have also been reported to be involved.

Treatment and Prognosis

The course of neurosyphilis in HIV-infected patients tends to be more aggressive than it is in the general population. Early diagnosis is critical for disease management because the infection is easily treatable with antibiotics.

Bacterial Infections

Pyogenic intracranial infections are relatively uncommon in the AIDS population. AIDS patients are subject to the same types of bacterial infections seen in immunocompetent patients, and *Staphylococcus* and *Streptococcus* are the most common causative organisms. The imaging findings seen in AIDS patients are identical to those seen in immunocompetent patients.

Immune Reconstitution Inflammatory Syndrome

HAART succeeds in suppressing HIV replication and improving cellular immunity, which protects HIV-infected patients against opportunistic infections (101). However, in a few of these patients, partial restoration of specific immunity may worsen a preexisting disease; the resulting condition is referred to as immune reconstitution inflammatory syndrome (IRIS) (102). IRIS is not caused by a relapse or recurrence of the preexisting disease, and its exact etiology is unknown. IRIS is thought to be related to reconstitution of immunity, which leads to abnormal immune response to either specific infectious or noninfectious antigens (103). Patients with IRIS demonstrate paradoxical deterioration in their clinical status when their CD4 counts rise and viral replication appears to be under control (102), and death from IRIS has been reported (17). IRIS occurs in the initial months after the onset of HAART. The neuroimaging findings vary, depending on the underlying pathologic conditions, and may be atypical, such as prominent, progressive enhancement and mass effect seen in PML (Fig 21).

Conclusions

The neuroimaging findings of infectious CNS diseases in patients with HIV infection are varied, including mass lesions, atrophy, demyelination, vascular complications, and meningoencephalitis. HAART has led to improvement of many of the imaging findings, but it can occasionally result in IRIS, which has atypical imaging findings.

Knowledge of the imaging findings of infectious CNS diseases in HIV-infected patients, as well as the impact of HAART, is important in patient treatment.

References

Central Nervous System Infections Associated with Human Immunodeficiency Virus Infection: Radiologic-Pathologic Correlation

Alice B. Smith, MD, et al

Page 2035
HIV encephalopathy does not result in mass effect or enhancement. If either of these findings is present, another diagnosis must be considered.

Page 2039
In patients with PML, CT reveals asymmetric focal zones of low attenuation that involve the periventricular and subcortical white matter (Fig 4a). This appearance is a differential diagnostic feature compared with the typically more symmetric areas of low attenuation seen in patients with HIV encephalopathy.

Page 2041
Hemorrhage may be seen occasionally, a finding that can help differentiate toxoplasmosis from lymphoma, which typically does not hemorrhage before treatment (52).

Page 2045
Dilated perivascular spaces resulting from the presence of gelatinous pseudocysts are a frequent finding, and their presence in an immunocompromised patient should raise a red flag (Fig 11c).

Page 2049
The presence of hemorrhage associated with the lesions and intraparenchymal hemorrhage in an immunocompromised patient should cause one to consider the possibility of aspergillosis (Fig 17).